Base-dependent property of integers
In mathematics , a natural number  in a given number base  is a 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
  -Kaprekar number  if the representation of its square in that base can be split into two parts, where the second part has 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
   digits, that add up to the original number. الأعداد مسماة على اسم د. ر. كاپريكار .
 
  التعريف والخصائص  
Let 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   be a natural number. We define the Kaprekar function  for base 
  
    
      
        b 
        > 
        1 
       
     
    {\displaystyle b>1} 
   
   and power 
  
    
      
        p 
        > 
        0 
       
     
    {\displaystyle p>0} 
   
   
  
    
      
        
          F 
          
            p 
            , 
            b 
           
         
        : 
        
          N 
         
        → 
        
          N 
         
       
     
    {\displaystyle F_{p,b}:\mathbb {N} \rightarrow \mathbb {N} } 
   
   to be the following:
  
    
      
        
          F 
          
            p 
            , 
            b 
           
         
        ( 
        n 
        ) 
        = 
        α 
        + 
        β 
       
     
    {\displaystyle F_{p,b}(n)=\alpha +\beta } 
   
  , 
where 
  
    
      
        β 
        = 
        
          n 
          
            2 
           
         
        
          
            mod 
            
              b 
             
           
          
            p 
           
         
       
     
    {\displaystyle \beta =n^{2}{\bmod {b}}^{p}} 
   
   and 
  
    
      
        α 
        = 
        
          
            
              
                n 
                
                  2 
                 
               
              − 
              β 
             
            
              b 
              
                p 
               
             
           
         
       
     
    {\displaystyle \alpha ={\frac {n^{2}-\beta }{b^{p}}}} 
   
  
A natural number 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   is a 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
  -Kaprekar number  if it is a fixed point  for 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
         
       
     
    {\displaystyle F_{p,b}} 
   
  , which occurs if 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
         
        ( 
        n 
        ) 
        = 
        n 
       
     
    {\displaystyle F_{p,b}(n)=n} 
   
  . 
  
    
      
        0 
       
     
    {\displaystyle 0} 
   
   and 
  
    
      
        1 
       
     
    {\displaystyle 1} 
   
   are trivial Kaprekar numbers  for all 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
   and 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
  , all other Kaprekar numbers are nontrivial Kaprekar numbers .
For example, in base 10 , 45 is a 2-Kaprekar number, because 
  
    
      
        β 
        = 
        
          n 
          
            2 
           
         
        
          
            mod 
            
              b 
             
           
          
            p 
           
         
        = 
        
          45 
          
            2 
           
         
        
          mod 
          
            1 
           
         
        
          0 
          
            2 
           
         
        = 
        25 
       
     
    {\displaystyle \beta =n^{2}{\bmod {b}}^{p}=45^{2}{\bmod {1}}0^{2}=25} 
   
  
  
    
      
        α 
        = 
        
          
            
              
                n 
                
                  2 
                 
               
              − 
              β 
             
            
              b 
              
                p 
               
             
           
         
        = 
        
          
            
              
                45 
                
                  2 
                 
               
              − 
              25 
             
            
              10 
              
                2 
               
             
           
         
        = 
        20 
       
     
    {\displaystyle \alpha ={\frac {n^{2}-\beta }{b^{p}}}={\frac {45^{2}-25}{10^{2}}}=20} 
   
  
  
    
      
        
          F 
          
            2 
            , 
            10 
           
         
        ( 
        45 
        ) 
        = 
        α 
        + 
        β 
        = 
        20 
        + 
        25 
        = 
        45 
       
     
    {\displaystyle F_{2,10}(45)=\alpha +\beta =20+25=45} 
   
  
A natural number 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   is a sociable Kaprekar number  if it is a periodic point  for 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
         
       
     
    {\displaystyle F_{p,b}} 
   
  , where 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
          
            k 
           
         
        ( 
        n 
        ) 
        = 
        n 
       
     
    {\displaystyle F_{p,b}^{k}(n)=n} 
   
   for a positive integer  
  
    
      
        k 
       
     
    {\displaystyle k} 
   
   (where 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
          
            k 
           
         
       
     
    {\displaystyle F_{p,b}^{k}} 
   
   is the 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
  th iterate  of 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
         
       
     
    {\displaystyle F_{p,b}} 
   
  ), and forms a cycle  of period 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
  . A Kaprekar number is a sociable Kaprekar number with 
  
    
      
        k 
        = 
        1 
       
     
    {\displaystyle k=1} 
   
  , and a amicable Kaprekar number  is a sociable Kaprekar number with 
  
    
      
        k 
        = 
        2 
       
     
    {\displaystyle k=2} 
   
  .
The number of iterations 
  
    
      
        i 
       
     
    {\displaystyle i} 
   
   needed for 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
          
            i 
           
         
        ( 
        n 
        ) 
       
     
    {\displaystyle F_{p,b}^{i}(n)} 
   
   to reach a fixed point is the Kaprekar function's persistence  of 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
  , and undefined if it never reaches a fixed point.
There are only a finite number of 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
  -Kaprekar numbers and cycles for a given base 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
  , because if 
  
    
      
        n 
        = 
        
          b 
          
            p 
           
         
        + 
        m 
       
     
    {\displaystyle n=b^{p}+m} 
   
  , where 
  
    
      
        m 
        > 
        0 
       
     
    {\displaystyle m>0} 
   
   then 
  
    
      
        
          
            
              
                
                  n 
                  
                    2 
                   
                 
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                m 
                
                  ) 
                  
                    2 
                   
                 
               
             
            
               
              
                 
                = 
                
                  b 
                  
                    2 
                    p 
                   
                 
                + 
                2 
                m 
                
                  b 
                  
                    p 
                   
                 
                + 
                
                  m 
                  
                    2 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                2 
                m 
                ) 
                
                  b 
                  
                    p 
                   
                 
                + 
                
                  m 
                  
                    2 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}n^{2}&=(b^{p}+m)^{2}\\&=b^{2p}+2mb^{p}+m^{2}\\&=(b^{p}+2m)b^{p}+m^{2}\\\end{aligned}}} 
   
  
and 
  
    
      
        β 
        = 
        
          m 
          
            2 
           
         
       
     
    {\displaystyle \beta =m^{2}} 
   
  , 
  
    
      
        α 
        = 
        
          b 
          
            p 
           
         
        + 
        2 
        m 
       
     
    {\displaystyle \alpha =b^{p}+2m} 
   
  , and 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
         
        ( 
        n 
        ) 
        = 
        
          b 
          
            p 
           
         
        + 
        2 
        m 
        + 
        
          m 
          
            2 
           
         
        = 
        n 
        + 
        ( 
        
          m 
          
            2 
           
         
        + 
        m 
        ) 
        > 
        n 
       
     
    {\displaystyle F_{p,b}(n)=b^{p}+2m+m^{2}=n+(m^{2}+m)>n} 
   
  . Only when 
  
    
      
        n 
        ≤ 
        
          b 
          
            p 
           
         
       
     
    {\displaystyle n\leq b^{p}} 
   
   do Kaprekar numbers and cycles exist. 
If 
  
    
      
        d 
       
     
    {\displaystyle d} 
   
   is any divisor of 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
  , then 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   is also a 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
  -Kaprekar number for base 
  
    
      
        
          b 
          
            p 
           
         
       
     
    {\displaystyle b^{p}} 
   
  . 
In base 
  
    
      
        b 
        = 
        2 
       
     
    {\displaystyle b=2} 
   
  , all even perfect numbers  are Kaprekar numbers.  More generally, any numbers of the form 
  
    
      
        
          2 
          
            n 
           
         
        ( 
        
          2 
          
            n 
            + 
            1 
           
         
        − 
        1 
        ) 
       
     
    {\displaystyle 2^{n}(2^{n+1}-1)} 
   
   or 
  
    
      
        
          2 
          
            n 
           
         
        ( 
        
          2 
          
            n 
            + 
            1 
           
         
        + 
        1 
        ) 
       
     
    {\displaystyle 2^{n}(2^{n+1}+1)} 
   
   for natural number 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   are Kaprekar numbers in base 2 .
  التعريف حسب نظرية الفئات وقواسم الوحدة  
We can define the set 
  
    
      
        K 
        ( 
        N 
        ) 
       
     
    {\displaystyle K(N)} 
   
   for a given integer 
  
    
      
        N 
       
     
    {\displaystyle N} 
   
   as the set of integers 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   for which there exist natural numbers 
  
    
      
        A 
       
     
    {\displaystyle A} 
   
   and 
  
    
      
        B 
       
     
    {\displaystyle B} 
   
   satisfying the Diophantine equation [1]  
  
    
      
        
          X 
          
            2 
           
         
        = 
        A 
        N 
        + 
        B 
       
     
    {\displaystyle X^{2}=AN+B} 
   
  , where 
  
    
      
        0 
        ≤ 
        B 
        < 
        N 
       
     
    {\displaystyle 0\leq B<N} 
   
  
  
    
      
        X 
        = 
        A 
        + 
        B 
       
     
    {\displaystyle X=A+B} 
   
  
An 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
  -Kaprekar number for base 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
   is then one which lies in the set 
  
    
      
        K 
        ( 
        
          b 
          
            n 
           
         
        ) 
       
     
    {\displaystyle K(b^{n})} 
   
  .
It was shown in 2000[1]   that there is a bijection  between the unitary divisors  of 
  
    
      
        N 
        − 
        1 
       
     
    {\displaystyle N-1} 
   
   and the set 
  
    
      
        K 
        ( 
        N 
        ) 
       
     
    {\displaystyle K(N)} 
   
   defined above.  Let 
  
    
      
        Inv 
         
        ( 
        a 
        , 
        c 
        ) 
       
     
    {\displaystyle \operatorname {Inv} (a,c)} 
   
   denote the multiplicative inverse  of 
  
    
      
        a 
       
     
    {\displaystyle a} 
   
   modulo 
  
    
      
        c 
       
     
    {\displaystyle c} 
   
  , namely the least positive integer 
  
    
      
        m 
       
     
    {\displaystyle m} 
   
   such that 
  
    
      
        a 
        m 
        = 
        1 
        
          mod 
          
            c 
           
         
       
     
    {\displaystyle am=1{\bmod {c}}} 
   
  , and for each unitary divisor 
  
    
      
        d 
       
     
    {\displaystyle d} 
   
   of 
  
    
      
        N 
        − 
        1 
       
     
    {\displaystyle N-1} 
   
   let 
  
    
      
        e 
        = 
        
          
            
              N 
              − 
              1 
             
            d 
           
         
       
     
    {\displaystyle e={\frac {N-1}{d}}} 
   
   and 
  
    
      
        ζ 
        ( 
        d 
        ) 
        = 
        d 
          
        
          Inv 
         
        ( 
        d 
        , 
        e 
        ) 
       
     
    {\displaystyle \zeta (d)=d\ {\text{Inv}}(d,e)} 
   
  .  Then the function 
  
    
      
        ζ 
       
     
    {\displaystyle \zeta } 
   
   is a bijection from the set of unitary divisors of 
  
    
      
        N 
        − 
        1 
       
     
    {\displaystyle N-1} 
   
   onto the set 
  
    
      
        K 
        ( 
        N 
        ) 
       
     
    {\displaystyle K(N)} 
   
  .  In particular, a number 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   is in the set 
  
    
      
        K 
        ( 
        N 
        ) 
       
     
    {\displaystyle K(N)} 
   
   if and only if 
  
    
      
        X 
        = 
        d 
          
        
          Inv 
         
        ( 
        d 
        , 
        e 
        ) 
       
     
    {\displaystyle X=d\ {\text{Inv}}(d,e)} 
   
   for some unitary divisor 
  
    
      
        d 
       
     
    {\displaystyle d} 
   
   of 
  
    
      
        N 
        − 
        1 
       
     
    {\displaystyle N-1} 
   
  .
The numbers in 
  
    
      
        K 
        ( 
        N 
        ) 
       
     
    {\displaystyle K(N)} 
   
   occur in complementary pairs, 
  
    
      
        X 
       
     
    {\displaystyle X} 
   
   and 
  
    
      
        N 
        − 
        X 
       
     
    {\displaystyle N-X} 
   
  .  If 
  
    
      
        d 
       
     
    {\displaystyle d} 
   
   is a unitary divisor of 
  
    
      
        N 
        − 
        1 
       
     
    {\displaystyle N-1} 
   
   then so is 
  
    
      
        e 
        = 
        
          
            
              N 
              − 
              1 
             
            d 
           
         
       
     
    {\displaystyle e={\frac {N-1}{d}}} 
   
  , and if 
  
    
      
        X 
        = 
        d 
        Inv 
         
        ( 
        d 
        , 
        e 
        ) 
       
     
    {\displaystyle X=d\operatorname {Inv} (d,e)} 
   
   then 
  
    
      
        N 
        − 
        X 
        = 
        e 
        Inv 
         
        ( 
        e 
        , 
        d 
        ) 
       
     
    {\displaystyle N-X=e\operatorname {Inv} (e,d)} 
   
  .
  Kaprekar numbers for 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
         
       
     
    {\displaystyle F_{p,b}} 
   
   
  b  = 4k  + 3 and p  = 2n  + 1 
Let 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
   and 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   be natural numbers, the number base 
  
    
      
        b 
        = 
        4 
        k 
        + 
        3 
        = 
        2 
        ( 
        2 
        k 
        + 
        1 
        ) 
        + 
        1 
       
     
    {\displaystyle b=4k+3=2(2k+1)+1} 
   
  , and 
  
    
      
        p 
        = 
        2 
        n 
        + 
        1 
       
     
    {\displaystyle p=2n+1} 
   
  . Then: 
  
    
      
        
          X 
          
            1 
           
         
        = 
        
          
            
              
                b 
                
                  p 
                 
               
              − 
              1 
             
            2 
           
         
        = 
        ( 
        2 
        k 
        + 
        1 
        ) 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            p 
            − 
            1 
           
         
        
          b 
          
            i 
           
         
       
     
    {\displaystyle X_{1}={\frac {b^{p}-1}{2}}=(2k+1)\sum _{i=0}^{p-1}b^{i}} 
   
   is a Kaprekar number. 
Proof 
Let
  
    
      
        
          
            
              
                
                  X 
                  
                    1 
                   
                 
               
              
                 
                = 
                
                  
                    
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      1 
                     
                    2 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      b 
                      − 
                      1 
                     
                    2 
                   
                 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    p 
                    − 
                    1 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      4 
                      k 
                      + 
                      3 
                      − 
                      1 
                     
                    2 
                   
                 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    2 
                    n 
                    + 
                    1 
                    − 
                    1 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    2 
                    n 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}X_{1}&={\frac {b^{p}-1}{2}}\\&={\frac {b-1}{2}}\sum _{i=0}^{p-1}b^{i}\\&={\frac {4k+3-1}{2}}\sum _{i=0}^{2n+1-1}b^{i}\\&=(2k+1)\sum _{i=0}^{2n}b^{i}\end{aligned}}} 
   
  
Then,
  
    
      
        
          
            
              
                
                  X 
                  
                    1 
                   
                  
                    2 
                   
                 
               
              
                 
                = 
                
                  
                    ( 
                    
                      
                        
                          
                            b 
                            
                              p 
                             
                           
                          − 
                          1 
                         
                        2 
                       
                     
                    ) 
                   
                  
                    2 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      
                        b 
                        
                          2 
                          p 
                         
                       
                      − 
                      2 
                      
                        b 
                        
                          p 
                         
                       
                      + 
                      1 
                     
                    4 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      
                        b 
                        
                          p 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          2 
                          n 
                          + 
                          1 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          2 
                          n 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      ( 
                      4 
                      k 
                      + 
                      4 
                      ) 
                      − 
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          2 
                          n 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      − 
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          2 
                          n 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
                + 
                ( 
                k 
                + 
                1 
                ) 
                ( 
                4 
                k 
                + 
                3 
                
                  ) 
                  
                    2 
                    n 
                   
                 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
               
             
            
               
              
                 
                = 
                
                  
                    
                      − 
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          2 
                          n 
                          − 
                          1 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      ( 
                      4 
                      k 
                      + 
                      4 
                      ) 
                      + 
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          2 
                          n 
                          − 
                          1 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
                + 
                ( 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    n 
                   
                 
                ( 
                
                  b 
                  
                    2 
                    n 
                    + 
                    1 
                   
                 
                − 
                2 
                ) 
               
             
            
               
              
                 
                = 
                
                  
                    
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          2 
                          n 
                          − 
                          1 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
                + 
                ( 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    n 
                   
                 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                − 
                ( 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    n 
                    − 
                    1 
                   
                 
                ( 
                
                  b 
                  
                    2 
                    n 
                    + 
                    1 
                   
                 
                − 
                2 
                ) 
               
             
            
               
              
                 
                = 
                
                  
                    
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          p 
                          − 
                          2 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    p 
                    − 
                    2 
                   
                  
                    p 
                    − 
                    1 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    i 
                   
                 
                ( 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    i 
                   
                 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
               
             
            
               
              
                 
                = 
                
                  
                    
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          p 
                          − 
                          2 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
                + 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ∑ 
                  
                    i 
                    = 
                    p 
                    − 
                    2 
                   
                  
                    p 
                    − 
                    1 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    i 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          1 
                         
                       
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
                + 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    p 
                    − 
                    1 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    i 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      − 
                      ( 
                      
                        b 
                        
                          p 
                         
                       
                      − 
                      2 
                      ) 
                      + 
                      1 
                     
                    4 
                   
                 
                + 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    p 
                    − 
                    1 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    i 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                + 
                
                  
                    
                      − 
                      
                        b 
                        
                          2 
                          n 
                          + 
                          1 
                         
                       
                      + 
                      3 
                     
                    4 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                + 
                
                  
                    
                      − 
                      4 
                      
                        b 
                        
                          2 
                          n 
                          + 
                          1 
                         
                       
                      + 
                      3 
                      
                        b 
                        
                          2 
                          n 
                          + 
                          1 
                         
                       
                      + 
                      3 
                     
                    4 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                − 
                
                  b 
                  
                    p 
                   
                 
                + 
                
                  
                    
                      3 
                      
                        b 
                        
                          2 
                          n 
                          + 
                          1 
                         
                       
                      + 
                      3 
                     
                    4 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                − 
                
                  b 
                  
                    p 
                   
                 
                + 
                
                  
                    
                      3 
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          p 
                          − 
                          2 
                         
                       
                      + 
                      3 
                     
                    4 
                   
                 
                + 
                3 
                ( 
                k 
                + 
                1 
                ) 
                
                  ∑ 
                  
                    i 
                    = 
                    p 
                    − 
                    2 
                   
                  
                    p 
                    − 
                    1 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    i 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                − 
                
                  b 
                  
                    p 
                   
                 
                + 
                
                  
                    
                      3 
                      ( 
                      4 
                      k 
                      + 
                      3 
                      
                        ) 
                        
                          1 
                         
                       
                      + 
                      3 
                     
                    4 
                   
                 
                + 
                3 
                ( 
                k 
                + 
                1 
                ) 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    p 
                    − 
                    1 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    i 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                − 
                
                  b 
                  
                    p 
                   
                 
                + 
                
                  
                    
                      − 
                      3 
                      + 
                      3 
                     
                    4 
                   
                 
                + 
                3 
                ( 
                k 
                + 
                1 
                ) 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    p 
                    − 
                    1 
                   
                 
                ( 
                − 
                1 
                
                  ) 
                  
                    i 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                + 
                3 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                − 
                
                  b 
                  
                    p 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                − 
                2 
                + 
                3 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                − 
                
                  b 
                  
                    p 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                1 
                ) 
                ( 
                k 
                + 
                1 
                ) 
                
                  ( 
                  
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                − 
                
                  b 
                  
                    p 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                1 
                ) 
                
                  ( 
                  
                    − 
                    1 
                    + 
                    ( 
                    k 
                    + 
                    1 
                    ) 
                    
                      ∑ 
                      
                        i 
                        = 
                        0 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                1 
                ) 
                
                  ( 
                  
                    k 
                    + 
                    ( 
                    k 
                    + 
                    1 
                    ) 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        2 
                        n 
                       
                     
                    ( 
                    − 
                    1 
                    
                      ) 
                      
                        i 
                       
                     
                    
                      b 
                      
                        i 
                       
                     
                   
                  ) 
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                1 
                ) 
                
                  ( 
                  
                    k 
                    + 
                    ( 
                    k 
                    + 
                    1 
                    ) 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    
                      b 
                      
                        2 
                        i 
                       
                     
                    − 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                1 
                ) 
                
                  ( 
                  
                    k 
                    + 
                    ( 
                    k 
                    + 
                    1 
                    ) 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    b 
                    − 
                    1 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                1 
                ) 
                
                  ( 
                  
                    k 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    ( 
                    k 
                    + 
                    1 
                    ) 
                    b 
                    − 
                    k 
                    − 
                    1 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                1 
                ) 
                
                  ( 
                  
                    k 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    4 
                    k 
                    + 
                    3 
                    ) 
                    − 
                    k 
                    − 
                    1 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                ( 
                
                  b 
                  
                    p 
                   
                 
                + 
                1 
                ) 
                
                  ( 
                  
                    k 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                
                  b 
                  
                    p 
                   
                 
                
                  ( 
                  
                    k 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                
                  ( 
                  
                    k 
                    + 
                    1 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}X_{1}^{2}&=\left({\frac {b^{p}-1}{2}}\right)^{2}\\&={\frac {b^{2p}-2b^{p}+1}{4}}\\&={\frac {b^{p}(b^{p}-2)+1}{4}}\\&={\frac {(4k+3)^{2n+1}(b^{p}-2)+1}{4}}\\&={\frac {(4k+3)^{2n}(b^{p}-2)(4k+4)-(4k+3)^{2n}(b^{p}-2)+1}{4}}\\&={\frac {-(4k+3)^{2n}(b^{p}-2)+1}{4}}+(k+1)(4k+3)^{2n}(b^{p}-2)\\&={\frac {-(4k+3)^{2n-1}(b^{p}-2)(4k+4)+(4k+3)^{2n-1}(b^{p}-2)+1}{4}}+(k+1)b^{2n}(b^{2n+1}-2)\\&={\frac {(4k+3)^{2n-1}(b^{p}-2)+1}{4}}+(k+1)b^{2n}(b^{p}-2)-(k+1)b^{2n-1}(b^{2n+1}-2)\\&={\frac {(4k+3)^{p-2}(b^{p}-2)+1}{4}}+\sum _{i=p-2}^{p-1}(-1)^{i}(k+1)b^{i}(b^{p}-2)\\&={\frac {(4k+3)^{p-2}(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)\sum _{i=p-2}^{p-1}(-1)^{i}b^{i}\\&={\frac {(4k+3)^{1}(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)\sum _{i=1}^{p-1}(-1)^{i}b^{i}\\&={\frac {-(b^{p}-2)+1}{4}}+(b^{p}-2)(k+1)\sum _{i=0}^{p-1}(-1)^{i}b^{i}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)+{\frac {-b^{2n+1}+3}{4}}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)+{\frac {-4b^{2n+1}+3b^{2n+1}+3}{4}}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{\frac {3b^{2n+1}+3}{4}}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{\frac {3(4k+3)^{p-2}+3}{4}}+3(k+1)\sum _{i=p-2}^{p-1}(-1)^{i}b^{i}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{\frac {3(4k+3)^{1}+3}{4}}+3(k+1)\sum _{i=1}^{p-1}(-1)^{i}b^{i}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}+{\frac {-3+3}{4}}+3(k+1)\sum _{i=0}^{p-1}(-1)^{i}b^{i}\\&=(b^{p}-2)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)+3(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}\\&=(b^{p}-2+3)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}\\&=(b^{p}+1)(k+1)\left(\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)-b^{p}\\&=(b^{p}+1)\left(-1+(k+1)\sum _{i=0}^{2n}(-1)^{i}b^{i}\right)+1\\&=(b^{p}+1)\left(k+(k+1)\sum _{i=1}^{2n}(-1)^{i}b^{i}\right)+1\\&=(b^{p}+1)\left(k+(k+1)\sum _{i=1}^{n}b^{2i}-b^{2i-1}\right)+1\\&=(b^{p}+1)\left(k+(k+1)\sum _{i=1}^{n}(b-1)b^{2i-1}\right)+1\\&=(b^{p}+1)\left(k+\sum _{i=1}^{n}((k+1)b-k-1)b^{2i-1}\right)+1\\&=(b^{p}+1)\left(k+\sum _{i=1}^{n}(kb+(4k+3)-k-1)b^{2i-1}\right)+1\\&=(b^{p}+1)\left(k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+1\\&=b^{p}\left(k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\end{aligned}}} 
   
  
 
The two numbers 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
   and 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
   are
  
    
      
        β 
        = 
        
          X 
          
            1 
           
          
            2 
           
         
        
          
            mod 
            
              b 
             
           
          
            p 
           
         
        = 
        k 
        + 
        1 
        + 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        ( 
        k 
        b 
        + 
        ( 
        3 
        k 
        + 
        2 
        ) 
        ) 
        
          b 
          
            2 
            i 
            − 
            1 
           
         
       
     
    {\displaystyle \beta =X_{1}^{2}{\bmod {b}}^{p}=k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}} 
   
  
  
    
      
        α 
        = 
        
          
            
              
                X 
                
                  1 
                 
                
                  2 
                 
               
              − 
              β 
             
            
              b 
              
                p 
               
             
           
         
        = 
        k 
        + 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        ( 
        k 
        b 
        + 
        ( 
        3 
        k 
        + 
        2 
        ) 
        ) 
        
          b 
          
            2 
            i 
            − 
            1 
           
         
       
     
    {\displaystyle \alpha ={\frac {X_{1}^{2}-\beta }{b^{p}}}=k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}} 
   
  
and their sum is
  
    
      
        
          
            
              
                α 
                + 
                β 
               
              
                 
                = 
                
                  ( 
                  
                    k 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                
                  ( 
                  
                    k 
                    + 
                    1 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                1 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                ( 
                2 
                k 
                ) 
                b 
                + 
                2 
                ( 
                3 
                k 
                + 
                2 
                ) 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                1 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                ( 
                2 
                k 
                ) 
                b 
                + 
                ( 
                6 
                k 
                + 
                4 
                ) 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                1 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                ( 
                2 
                k 
                ) 
                b 
                + 
                ( 
                4 
                k 
                + 
                3 
                ) 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
                + 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                1 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                ( 
                2 
                k 
                + 
                1 
                ) 
                b 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
                + 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                1 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    i 
                   
                 
                + 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                1 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    2 
                    n 
                   
                 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    2 
                    n 
                   
                 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    2 
                    n 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
              
                = 
                
                  X 
                  
                    1 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\alpha +\beta &=\left(k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\\&=2k+1+\sum _{i=1}^{n}((2k)b+2(3k+2))b^{2i-1}\\&=2k+1+\sum _{i=1}^{n}((2k)b+(6k+4))b^{2i-1}\\&=2k+1+\sum _{i=1}^{n}((2k)b+(4k+3))b^{2i-1}+(2k+1)b^{2i-1}\\&=2k+1+\sum _{i=1}^{n}((2k+1)b)b^{2i-1}+(2k+1)b^{2i-1}\\&=2k+1+\sum _{i=1}^{n}(2k+1)b^{2i}+(2k+1)b^{2i-1}\\&=2k+1+\sum _{i=1}^{2n}(2k+1)b^{i}\\&=\sum _{i=0}^{2n}(2k+1)b^{i}\\&=(2k+1)\sum _{i=0}^{2n}b^{i}&=X_{1}\\\end{aligned}}} 
   
  
Thus, 
  
    
      
        
          X 
          
            1 
           
         
       
     
    {\displaystyle X_{1}} 
   
   is a Kaprekar number.
 
  
    
      
        
          X 
          
            2 
           
         
        = 
        
          
            
              
                b 
                
                  p 
                 
               
              + 
              1 
             
            2 
           
         
        = 
        
          X 
          
            1 
           
         
        + 
        1 
       
     
    {\displaystyle X_{2}={\frac {b^{p}+1}{2}}=X_{1}+1} 
   
   is a Kaprekar number for all natural numbers 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
  . 
Proof 
Let
  
    
      
        
          
            
              
                
                  X 
                  
                    2 
                   
                 
               
              
                 
                = 
                
                  
                    
                      
                        b 
                        
                          2 
                          n 
                          + 
                          1 
                         
                       
                      + 
                      1 
                     
                    2 
                   
                 
               
             
            
               
              
                 
                = 
                
                  
                    
                      
                        b 
                        
                          2 
                          n 
                          + 
                          1 
                         
                       
                      − 
                      1 
                     
                    2 
                   
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                
                  X 
                  
                    1 
                   
                 
                + 
                1 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}X_{2}&={\frac {b^{2n+1}+1}{2}}\\&={\frac {b^{2n+1}-1}{2}}+1\\&=X_{1}+1\end{aligned}}} 
   
  
Then,
  
    
      
        
          
            
              
                
                  X 
                  
                    2 
                   
                  
                    2 
                   
                 
               
              
                 
                = 
                ( 
                
                  X 
                  
                    1 
                   
                 
                + 
                1 
                
                  ) 
                  
                    2 
                   
                 
               
             
            
               
              
                 
                = 
                
                  X 
                  
                    1 
                   
                  
                    2 
                   
                 
                + 
                2 
                
                  X 
                  
                    1 
                   
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                
                  X 
                  
                    1 
                   
                  
                    2 
                   
                 
                + 
                2 
                
                  X 
                  
                    1 
                   
                 
                + 
                1 
               
             
            
               
              
                 
                = 
                
                  b 
                  
                    p 
                   
                 
                
                  ( 
                  
                    k 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                
                  ( 
                  
                    k 
                    + 
                    1 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                
                  b 
                  
                    p 
                   
                 
                − 
                1 
                + 
                1 
               
             
            
               
              
                 
                = 
                
                  b 
                  
                    p 
                   
                 
                
                  ( 
                  
                    k 
                    + 
                    1 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                
                  ( 
                  
                    k 
                    + 
                    1 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}X_{2}^{2}&=(X_{1}+1)^{2}\\&=X_{1}^{2}+2X_{1}+1\\&=X_{1}^{2}+2X_{1}+1\\&=b^{p}\left(k+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+b^{p}-1+1\\&=b^{p}\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\end{aligned}}} 
   
  
The two numbers 
  
    
      
        α 
       
     
    {\displaystyle \alpha } 
   
   and 
  
    
      
        β 
       
     
    {\displaystyle \beta } 
   
   are
  
    
      
        β 
        = 
        
          X 
          
            2 
           
          
            2 
           
         
        
          
            mod 
            
              b 
             
           
          
            p 
           
         
        = 
        k 
        + 
        1 
        + 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        ( 
        k 
        b 
        + 
        ( 
        3 
        k 
        + 
        2 
        ) 
        ) 
        
          b 
          
            2 
            i 
            − 
            1 
           
         
       
     
    {\displaystyle \beta =X_{2}^{2}{\bmod {b}}^{p}=k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}} 
   
  
  
    
      
        α 
        = 
        
          
            
              
                X 
                
                  2 
                 
                
                  2 
                 
               
              − 
              β 
             
            
              b 
              
                p 
               
             
           
         
        = 
        k 
        + 
        1 
        + 
        
          ∑ 
          
            i 
            = 
            1 
           
          
            n 
           
         
        ( 
        k 
        b 
        + 
        ( 
        3 
        k 
        + 
        2 
        ) 
        ) 
        
          b 
          
            2 
            i 
            − 
            1 
           
         
       
     
    {\displaystyle \alpha ={\frac {X_{2}^{2}-\beta }{b^{p}}}=k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}} 
   
  
and their sum is
  
    
      
        
          
            
              
                α 
                + 
                β 
               
              
                 
                = 
                
                  ( 
                  
                    k 
                    + 
                    1 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
                + 
                
                  ( 
                  
                    k 
                    + 
                    1 
                    + 
                    
                      ∑ 
                      
                        i 
                        = 
                        1 
                       
                      
                        n 
                       
                     
                    ( 
                    k 
                    b 
                    + 
                    ( 
                    3 
                    k 
                    + 
                    2 
                    ) 
                    ) 
                    
                      b 
                      
                        2 
                        i 
                        − 
                        1 
                       
                     
                   
                  ) 
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                2 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                ( 
                2 
                k 
                ) 
                b 
                + 
                2 
                ( 
                3 
                k 
                + 
                2 
                ) 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                2 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                ( 
                2 
                k 
                ) 
                b 
                + 
                ( 
                6 
                k 
                + 
                4 
                ) 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                2 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                ( 
                2 
                k 
                ) 
                b 
                + 
                ( 
                4 
                k 
                + 
                3 
                ) 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
                + 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                2 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                ( 
                2 
                k 
                + 
                1 
                ) 
                b 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
                + 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                2 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    i 
                   
                 
                + 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    2 
                    i 
                    − 
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                2 
                k 
                + 
                2 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    1 
                   
                  
                    2 
                    n 
                   
                 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                1 
                + 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    2 
                    n 
                   
                 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                1 
                + 
                ( 
                2 
                k 
                + 
                1 
                ) 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    2 
                    n 
                   
                 
                
                  b 
                  
                    i 
                   
                 
               
             
            
               
              
                 
                = 
                1 
                + 
                
                  X 
                  
                    1 
                   
                 
               
             
            
               
              
                 
                = 
                
                  X 
                  
                    2 
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\alpha +\beta &=\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)+\left(k+1+\sum _{i=1}^{n}(kb+(3k+2))b^{2i-1}\right)\\&=2k+2+\sum _{i=1}^{n}((2k)b+2(3k+2))b^{2i-1}\\&=2k+2+\sum _{i=1}^{n}((2k)b+(6k+4))b^{2i-1}\\&=2k+2+\sum _{i=1}^{n}((2k)b+(4k+3))b^{2i-1}+(2k+1)b^{2i-1}\\&=2k+2+\sum _{i=1}^{n}((2k+1)b)b^{2i-1}+(2k+1)b^{2i-1}\\&=2k+2+\sum _{i=1}^{n}(2k+1)b^{2i}+(2k+1)b^{2i-1}\\&=2k+2+\sum _{i=1}^{2n}(2k+1)b^{i}\\&=1+\sum _{i=0}^{2n}(2k+1)b^{i}\\&=1+(2k+1)\sum _{i=0}^{2n}b^{i}\\&=1+X_{1}\\&=X_{2}\end{aligned}}} 
   
  
Thus, 
  
    
      
        
          X 
          
            2 
           
         
       
     
    {\displaystyle X_{2}} 
   
   is a Kaprekar number.
 
b  = m 2 k  + m  + 1 and p  = mn  + 1 
Let 
  
    
      
        m 
       
     
    {\displaystyle m} 
   
  , 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
  , and 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   be natural numbers, the number base 
  
    
      
        b 
        = 
        
          m 
          
            2 
           
         
        k 
        + 
        m 
        + 
        1 
       
     
    {\displaystyle b=m^{2}k+m+1} 
   
  , and the power 
  
    
      
        p 
        = 
        m 
        n 
        + 
        1 
       
     
    {\displaystyle p=mn+1} 
   
  . Then: 
  
    
      
        
          X 
          
            1 
           
         
        = 
        
          
            
              
                b 
                
                  p 
                 
               
              − 
              1 
             
            m 
           
         
        = 
        ( 
        m 
        k 
        + 
        1 
        ) 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            p 
            − 
            1 
           
         
        
          b 
          
            i 
           
         
       
     
    {\displaystyle X_{1}={\frac {b^{p}-1}{m}}=(mk+1)\sum _{i=0}^{p-1}b^{i}} 
   
   is a Kaprekar number. 
  
    
      
        
          X 
          
            2 
           
         
        = 
        
          
            
              
                b 
                
                  p 
                 
               
              + 
              m 
              − 
              1 
             
            m 
           
         
        = 
        
          X 
          
            1 
           
         
        + 
        1 
       
     
    {\displaystyle X_{2}={\frac {b^{p}+m-1}{m}}=X_{1}+1} 
   
   is a Kaprekar number. 
  b  = m 2 k  + m  + 1 and p  = mn  + m  − 1 
Let 
  
    
      
        m 
       
     
    {\displaystyle m} 
   
  , 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
  , and 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   be natural numbers, the number base 
  
    
      
        b 
        = 
        
          m 
          
            2 
           
         
        k 
        + 
        m 
        + 
        1 
       
     
    {\displaystyle b=m^{2}k+m+1} 
   
  , and the power 
  
    
      
        p 
        = 
        m 
        n 
        + 
        m 
        − 
        1 
       
     
    {\displaystyle p=mn+m-1} 
   
  . Then: 
  
    
      
        
          X 
          
            1 
           
         
        = 
        
          
            
              m 
              ( 
              
                b 
                
                  p 
                 
               
              − 
              1 
              ) 
             
            4 
           
         
        = 
        ( 
        m 
        − 
        1 
        ) 
        ( 
        m 
        k 
        + 
        1 
        ) 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            p 
            − 
            1 
           
         
        
          b 
          
            i 
           
         
       
     
    {\displaystyle X_{1}={\frac {m(b^{p}-1)}{4}}=(m-1)(mk+1)\sum _{i=0}^{p-1}b^{i}} 
   
   is a Kaprekar number. 
  
    
      
        
          X 
          
            2 
           
         
        = 
        
          
            
              m 
              
                b 
                
                  p 
                 
               
              + 
              1 
             
            4 
           
         
        = 
        
          X 
          
            3 
           
         
        + 
        1 
       
     
    {\displaystyle X_{2}={\frac {mb^{p}+1}{4}}=X_{3}+1} 
   
   is a Kaprekar number. 
  b  = m 2 k  + m 2  − m  + 1 and p  = mn  + 1 
Let 
  
    
      
        m 
       
     
    {\displaystyle m} 
   
  , 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
  , and 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   be natural numbers, the number base 
  
    
      
        b 
        = 
        
          m 
          
            2 
           
         
        k 
        + 
        
          m 
          
            2 
           
         
        − 
        m 
        + 
        1 
       
     
    {\displaystyle b=m^{2}k+m^{2}-m+1} 
   
  , and the power 
  
    
      
        p 
        = 
        m 
        n 
        + 
        m 
        − 
        1 
       
     
    {\displaystyle p=mn+m-1} 
   
  . Then: 
  
    
      
        
          X 
          
            1 
           
         
        = 
        
          
            
              ( 
              m 
              − 
              1 
              ) 
              ( 
              
                b 
                
                  p 
                 
               
              − 
              1 
              ) 
             
            m 
           
         
        = 
        ( 
        m 
        − 
        1 
        ) 
        ( 
        m 
        k 
        + 
        1 
        ) 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            p 
            − 
            1 
           
         
        
          b 
          
            i 
           
         
       
     
    {\displaystyle X_{1}={\frac {(m-1)(b^{p}-1)}{m}}=(m-1)(mk+1)\sum _{i=0}^{p-1}b^{i}} 
   
   is a Kaprekar number. 
  
    
      
        
          X 
          
            2 
           
         
        = 
        
          
            
              ( 
              m 
              − 
              1 
              ) 
              
                b 
                
                  p 
                 
               
              + 
              1 
             
            m 
           
         
        = 
        
          X 
          
            1 
           
         
        + 
        1 
       
     
    {\displaystyle X_{2}={\frac {(m-1)b^{p}+1}{m}}=X_{1}+1} 
   
   is a Kaprekar number. 
  b  = m 2 k  + m 2  − m  + 1 and p  = mn  + m  − 1 
Let 
  
    
      
        m 
       
     
    {\displaystyle m} 
   
  , 
  
    
      
        k 
       
     
    {\displaystyle k} 
   
  , and 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
   be natural numbers, the number base 
  
    
      
        b 
        = 
        
          m 
          
            2 
           
         
        k 
        + 
        
          m 
          
            2 
           
         
        − 
        m 
        + 
        1 
       
     
    {\displaystyle b=m^{2}k+m^{2}-m+1} 
   
  , and the power 
  
    
      
        p 
        = 
        m 
        n 
        + 
        m 
        − 
        1 
       
     
    {\displaystyle p=mn+m-1} 
   
  . Then: 
  
    
      
        
          X 
          
            1 
           
         
        = 
        
          
            
              
                b 
                
                  p 
                 
               
              − 
              1 
             
            m 
           
         
        = 
        ( 
        m 
        k 
        + 
        1 
        ) 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            p 
            − 
            1 
           
         
        
          b 
          
            i 
           
         
       
     
    {\displaystyle X_{1}={\frac {b^{p}-1}{m}}=(mk+1)\sum _{i=0}^{p-1}b^{i}} 
   
   is a Kaprekar number. 
  
    
      
        
          X 
          
            2 
           
         
        = 
        
          
            
              
                b 
                
                  p 
                 
               
              + 
              m 
              − 
              1 
             
            m 
           
         
        = 
        
          X 
          
            3 
           
         
        + 
        1 
       
     
    {\displaystyle X_{2}={\frac {b^{p}+m-1}{m}}=X_{3}+1} 
   
   is a Kaprekar number. 
Kaprekar numbers and cycles of 
  
    
      
        
          F 
          
            p 
            , 
            b 
           
         
       
     
    {\displaystyle F_{p,b}} 
   
   for specific 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
  , 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
   
All numbers are in base 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
  .
Base 
  
    
      
        b 
       
     
    {\displaystyle b} 
   
  
 
Power 
  
    
      
        p 
       
     
    {\displaystyle p} 
   
  
 
Nontrivial Kaprekar numbers 
  
    
      
        n 
        ≠ 
        0 
       
     
    {\displaystyle n\neq 0} 
   
  , 
  
    
      
        n 
        ≠ 
        1 
       
     
    {\displaystyle n\neq 1} 
   
  
 
Cycles
  
2  
1 
10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
3  
1 
2, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
4  
1 
3, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
5  
1 
4, 5, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
6  
1 
5, 6, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
7 
1 
3, 4, 6, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
8  
1 
7, 10 
2 → 4 → 2
  
9  
1 
8, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
10  
1 
9, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
11 
1 
5, 6, A, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
12  
1 
B, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
13 
1 
4, 9, C, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
14 
1 
D, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
15 
1 
7, 8, E, 10 
2 → 4 → 2
9 → B → 9
  
16  
1 
6, A, F, 10 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
2 
2 
11 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
3 
2 
22, 100 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
4 
2 
12, 22, 33, 100 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
5 
2 
14, 31, 44, 100 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
6 
2 
23, 33, 55, 100 
15 → 24 → 15
41 → 50 → 41
  
7 
2 
22, 45, 66, 100 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
8 
2 
34, 44, 77, 100 
4 → 20 → 4
11 → 22 → 11
45 → 56 → 45
  
2 
3 
111, 1000 
10 → 100 → 10
  
3 
3 
111, 112, 222, 1000 
10 → 100 → 10
  
2 
4 
110, 1010, 1111, 10000 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
3 
4 
121, 2102, 2222, 10000 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
2 
5 
11111, 100000 
10 → 100 → 10000 → 1000 → 10
111 → 10010 → 1110 → 1010 → 111
  
3 
5 
11111, 22222, 100000 
10 → 100 → 10000 → 1000 → 10
  
2 
6 
11100, 100100, 111111, 1000000 
100 → 10000 → 100
1001 → 10010 → 1001
100101 → 101110 → 100101
  
3 
6 
10220, 20021, 101010, 121220, 202202, 212010, 222222, 1000000 
100 → 10000 → 100
122012 → 201212 → 122012
  
2 
7 
1111111, 10000000 
10 → 100 → 10000 → 10
1000 → 1000000 → 100000 → 1000
100110 → 101111 → 110010 → 1010111 → 1001100 → 111101 → 100110
  
3 
7 
1111111, 1111112, 2222222, 10000000 
10 → 100 → 10000 → 10
1000 → 1000000 → 100000 → 1000
1111121 → 1111211 → 1121111 → 1111121
  
2 
8 
1010101, 1111000, 10001000, 10101011, 11001101, 11111111, 100000000 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
3 
8 
2012021, 10121020, 12101210, 21121001, 20210202, 22222222, 100000000 
  
    
      
        ∅ 
       
     
    {\displaystyle \varnothing } 
   
  
 
2 
9 
10010011, 101101101, 111111111, 1000000000 
10 → 100 → 10000 → 100000000 → 10000000 → 100000 → 10
1000 → 1000000 → 1000
10011010 → 11010010 → 10011010
  
  امتداد للأعداد الصحيحة السالبة  
Kaprekar numbers can be extended to the negative integers by use of a signed-digit representation  to represent each integer.
  تمرين في البرمجة  
The example below implements the Kaprekar function described in the definition above to search for Kaprekar numbers and cycles  in Python .
def  kaprekarf ( x :  int ,  p :  int ,  b :  int )  ->  int : 
    beta  =  pow ( x ,  2 )  %  pow ( b ,  p ) 
    alpha  =  ( pow ( x ,  2 )  -  beta )  //  pow ( b ,  p ) 
    y  =  alpha  +  beta 
    return  y 
def  kaprekarf_cycle ( x :  int ,  p :  int ,  b :  int )  ->  List [ int ]: 
    seen  =  [] 
    while  x  <  pow ( b ,  p )  and  x  not  in  seen : 
        seen . append ( x ) 
        x  =  kaprekarf ( x ,  p ,  b ) 
    if  x  >  pow ( b ,  p ): 
        return  [] 
    cycle  =  [] 
    while  x  not  in  cycle : 
        cycle . append ( x ) 
        x  =  kaprekarf ( x ,  p ,  b ) 
    return  cycle 
 
  انظر أيضاً  
  الهامش  
  المراجع  
أعداد متعددات الحدود الأخرى
Possessing a specific set of other numbers
يمكن التعبير عنها بجموع معينة