الصفحة قالب:Infobox probability distribution/styles.css  ليس بها محتوى. 
Binomial distribution 
Probability mass function
 
Cumulative distribution function
 الترميز 
  
    
      
        B 
        ( 
        n 
        , 
        p 
        ) 
       
     
    {\displaystyle B(n,p)} 
   
  الوسائط 
  
    
      
        n 
        ∈ 
        { 
        0 
        , 
        1 
        , 
        2 
        , 
        … 
        } 
       
     
    {\displaystyle n\in \{0,1,2,\ldots \}} 
   
   – number of trials
  
    
      
        p 
        ∈ 
        [ 
        0 
        , 
        1 
        ] 
       
     
    {\displaystyle p\in [0,1]} 
   
   – success probability for each trial الحامل 
  
    
      
        k 
        ∈ 
        { 
        0 
        , 
        1 
        , 
        … 
        , 
        n 
        } 
       
     
    {\displaystyle k\in \{0,1,\ldots ,n\}} 
   
   – number of successes PMF 
  
    
      
        
          
            
              ( 
             
            
              n 
              k 
             
            
              ) 
             
           
         
        
          p 
          
            k 
           
         
        ( 
        1 
        − 
        p 
        
          ) 
          
            n 
            − 
            k 
           
         
       
     
    {\displaystyle {\binom {n}{k}}p^{k}(1-p)^{n-k}} 
   
  CDF 
  
    
      
        
          I 
          
            1 
            − 
            p 
           
         
        ( 
        n 
        − 
        k 
        , 
        1 
        + 
        k 
        ) 
       
     
    {\displaystyle I_{1-p}(n-k,1+k)} 
   
  المتوسط 
  
    
      
        n 
        p 
       
     
    {\displaystyle np} 
   
  أوسط 
  
    
      
        ⌊ 
        n 
        p 
        ⌋ 
       
     
    {\displaystyle \lfloor np\rfloor } 
   
   or 
  
    
      
        ⌈ 
        n 
        p 
        ⌉ 
       
     
    {\displaystyle \lceil np\rceil } 
   
  منوال 
  
    
      
        ⌊ 
        ( 
        n 
        + 
        1 
        ) 
        p 
        ⌋ 
       
     
    {\displaystyle \lfloor (n+1)p\rfloor } 
   
   or 
  
    
      
        ⌈ 
        ( 
        n 
        + 
        1 
        ) 
        p 
        ⌉ 
        − 
        1 
       
     
    {\displaystyle \lceil (n+1)p\rceil -1} 
   
  تباين 
  
    
      
        n 
        p 
        ( 
        1 
        − 
        p 
        ) 
       
     
    {\displaystyle np(1-p)} 
   
  تخالف 
  
    
      
        
          
            
              1 
              − 
              2 
              p 
             
            
              n 
              p 
              ( 
              1 
              − 
              p 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {1-2p}{\sqrt {np(1-p)}}}} 
   
  تدبب زائد 
  
    
      
        
          
            
              1 
              − 
              6 
              p 
              ( 
              1 
              − 
              p 
              ) 
             
            
              n 
              p 
              ( 
              1 
              − 
              p 
              ) 
             
           
         
       
     
    {\displaystyle {\frac {1-6p(1-p)}{np(1-p)}}} 
   
  الاعتلاج 
  
    
      
        
          
            1 
            2 
           
         
        
          log 
          
            2 
           
         
         
        
          ( 
          
            2 
            π 
            e 
            n 
            p 
            ( 
            1 
            − 
            p 
            ) 
           
          ) 
         
        + 
        O 
        
          ( 
          
            
              1 
              n 
             
           
          ) 
         
       
     
    {\displaystyle {\frac {1}{2}}\log _{2}\left(2\pi enp(1-p)\right)+O\left({\frac {1}{n}}\right)} 
   
   in shannons . For nats , use the natural log in the log. MGF 
  
    
      
        ( 
        1 
        − 
        p 
        + 
        p 
        
          e 
          
            t 
           
         
        
          ) 
          
            n 
           
         
       
     
    {\displaystyle (1-p+pe^{t})^{n}} 
   
  CF 
  
    
      
        ( 
        1 
        − 
        p 
        + 
        p 
        
          e 
          
            i 
            t 
           
         
        
          ) 
          
            n 
           
         
       
     
    {\displaystyle (1-p+pe^{it})^{n}} 
   
  PGF 
  
    
      
        G 
        ( 
        z 
        ) 
        = 
        [ 
        ( 
        1 
        − 
        p 
        ) 
        + 
        p 
        z 
        
          ] 
          
            n 
           
         
       
     
    {\displaystyle G(z)=[(1-p)+pz]^{n}} 
   
  معلومات فيشر 
  
    
      
        
          g 
          
            n 
           
         
        ( 
        p 
        ) 
        = 
        
          
            n 
            
              p 
              ( 
              1 
              − 
              p 
              ) 
             
           
         
       
     
    {\displaystyle g_{n}(p)={\frac {n}{p(1-p)}}} 
   
  (for fixed 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
  ) 
   Binomial distribution for 
  
    
      
        p 
        = 
        0.5 
       
     
    {\displaystyle p=0.5} 
   
 with 
n  and 
k  as in 
Pascal's triangle The probability that a ball in a 
Galton box  with 8 layers (
n  = 8) ends up in the central bin (
k  = 4) is 
  
    
      
        70 
        
          / 
         
        256 
       
     
    {\displaystyle 70/256} 
   
 .
 
توزيع احتمالي ثنائي  هو توزيع لتجربة  عشوائية  لها ناتجان فقط أحدهما نجاح التجربة والآخر فشلها ويكون الشرط الأساسي أن احتمال  النجاح لا يتأثر بتكرار التجربة ، أمثلة : رمي قطعة نقود ، الإحصاءات أو الأسئلة التي تعتمد الإجابة لا أو نعم.
بتعبير آخر التوزيع الاحتمالي ثنائي الحد  هو تكرار لتجربة برنولي  (انظر توزيع برنولي ).
 
  خصائص التوزيع الثنائي  
يتميز التوزيع الثنائى بعدة خصائص هي:
تتكون التجربة من أكثر من محاولة. إذا تكونت التجربة من محاولة واحدة ،فإننا في تجربة توزيع برنولي  . 
استقلال المحاولات عن بعضها البعض أي ثبات احتمال النجاح p ومن ثم احتمال الفشل q. 
هذه المحاولات جميعا متماثلة ومستقلة. 
احتمال النجاح ثابت في كل محاولة.  
قالب:بعض التوزيعات الاحتمالية الشائعة بمتغير واحد 
  
    
      
        
          
            
              
                F 
                ( 
                k 
                ; 
                n 
                , 
                p 
                ) 
               
              
                 
                = 
                Pr 
                ( 
                X 
                ≤ 
                k 
                ) 
               
             
            
               
              
                 
                = 
                
                  I 
                  
                    1 
                    − 
                    p 
                   
                 
                ( 
                n 
                − 
                k 
                , 
                k 
                + 
                1 
                ) 
               
             
            
               
              
                 
                = 
                ( 
                n 
                − 
                k 
                ) 
                
                  
                    
                      ( 
                     
                    
                      n 
                      k 
                     
                    
                      ) 
                     
                   
                 
                
                  ∫ 
                  
                    0 
                   
                  
                    1 
                    − 
                    p 
                   
                 
                
                  t 
                  
                    n 
                    − 
                    k 
                    − 
                    1 
                   
                 
                ( 
                1 
                − 
                t 
                
                  ) 
                  
                    k 
                   
                 
                 
                d 
                t 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}F(k;n,p)&=\Pr(X\leq k)\\&=I_{1-p}(n-k,k+1)\\&=(n-k){n \choose k}\int _{0}^{1-p}t^{n-k-1}(1-t)^{k}\,dt.\end{aligned}}} 
   
  
Some closed-form bounds for the cumulative distribution function are given below .
  Example  
Suppose a biased coin  comes up heads with probability 0.3 when tossed. What is the probability of achieving 0, 1,..., 6 heads after six tosses?
  
    
      
        Pr 
        ( 
        0 
        
           heads 
         
        ) 
        = 
        f 
        ( 
        0 
        ) 
        = 
        Pr 
        ( 
        X 
        = 
        0 
        ) 
        = 
        
          
            
              ( 
             
            
              6 
              0 
             
            
              ) 
             
           
         
        
          0.3 
          
            0 
           
         
        ( 
        1 
        − 
        0.3 
        
          ) 
          
            6 
            − 
            0 
           
         
        = 
        0.117649 
       
     
    {\displaystyle \Pr(0{\text{ heads}})=f(0)=\Pr(X=0)={6 \choose 0}0.3^{0}(1-0.3)^{6-0}=0.117649} 
   
  
  
    
      
        Pr 
        ( 
        1 
        
           heads 
         
        ) 
        = 
        f 
        ( 
        1 
        ) 
        = 
        Pr 
        ( 
        X 
        = 
        1 
        ) 
        = 
        
          
            
              ( 
             
            
              6 
              1 
             
            
              ) 
             
           
         
        
          0.3 
          
            1 
           
         
        ( 
        1 
        − 
        0.3 
        
          ) 
          
            6 
            − 
            1 
           
         
        = 
        0.302526 
       
     
    {\displaystyle \Pr(1{\text{ heads}})=f(1)=\Pr(X=1)={6 \choose 1}0.3^{1}(1-0.3)^{6-1}=0.302526} 
   
  
  
    
      
        Pr 
        ( 
        2 
        
           heads 
         
        ) 
        = 
        f 
        ( 
        2 
        ) 
        = 
        Pr 
        ( 
        X 
        = 
        2 
        ) 
        = 
        
          
            
              ( 
             
            
              6 
              2 
             
            
              ) 
             
           
         
        
          0.3 
          
            2 
           
         
        ( 
        1 
        − 
        0.3 
        
          ) 
          
            6 
            − 
            2 
           
         
        = 
        0.324135 
       
     
    {\displaystyle \Pr(2{\text{ heads}})=f(2)=\Pr(X=2)={6 \choose 2}0.3^{2}(1-0.3)^{6-2}=0.324135} 
   
  
  
    
      
        Pr 
        ( 
        3 
        
           heads 
         
        ) 
        = 
        f 
        ( 
        3 
        ) 
        = 
        Pr 
        ( 
        X 
        = 
        3 
        ) 
        = 
        
          
            
              ( 
             
            
              6 
              3 
             
            
              ) 
             
           
         
        
          0.3 
          
            3 
           
         
        ( 
        1 
        − 
        0.3 
        
          ) 
          
            6 
            − 
            3 
           
         
        = 
        0.18522 
       
     
    {\displaystyle \Pr(3{\text{ heads}})=f(3)=\Pr(X=3)={6 \choose 3}0.3^{3}(1-0.3)^{6-3}=0.18522} 
   
  
  
    
      
        Pr 
        ( 
        4 
        
           heads 
         
        ) 
        = 
        f 
        ( 
        4 
        ) 
        = 
        Pr 
        ( 
        X 
        = 
        4 
        ) 
        = 
        
          
            
              ( 
             
            
              6 
              4 
             
            
              ) 
             
           
         
        
          0.3 
          
            4 
           
         
        ( 
        1 
        − 
        0.3 
        
          ) 
          
            6 
            − 
            4 
           
         
        = 
        0.059535 
       
     
    {\displaystyle \Pr(4{\text{ heads}})=f(4)=\Pr(X=4)={6 \choose 4}0.3^{4}(1-0.3)^{6-4}=0.059535} 
   
  
  
    
      
        Pr 
        ( 
        5 
        
           heads 
         
        ) 
        = 
        f 
        ( 
        5 
        ) 
        = 
        Pr 
        ( 
        X 
        = 
        5 
        ) 
        = 
        
          
            
              ( 
             
            
              6 
              5 
             
            
              ) 
             
           
         
        
          0.3 
          
            5 
           
         
        ( 
        1 
        − 
        0.3 
        
          ) 
          
            6 
            − 
            5 
           
         
        = 
        0.010206 
       
     
    {\displaystyle \Pr(5{\text{ heads}})=f(5)=\Pr(X=5)={6 \choose 5}0.3^{5}(1-0.3)^{6-5}=0.010206} 
   
  
  
    
      
        Pr 
        ( 
        6 
        
           heads 
         
        ) 
        = 
        f 
        ( 
        6 
        ) 
        = 
        Pr 
        ( 
        X 
        = 
        6 
        ) 
        = 
        
          
            
              ( 
             
            
              6 
              6 
             
            
              ) 
             
           
         
        
          0.3 
          
            6 
           
         
        ( 
        1 
        − 
        0.3 
        
          ) 
          
            6 
            − 
            6 
           
         
        = 
        0.000729 
       
     
    {\displaystyle \Pr(6{\text{ heads}})=f(6)=\Pr(X=6)={6 \choose 6}0.3^{6}(1-0.3)^{6-6}=0.000729} 
   
 [1]  
  Mean  
If X  ~ B (n , p ), that is, X  is a binomially distributed random variable, n being the total number of experiments and p the probability of each experiment yielding a successful result, then the expected value  of X  is:[2]  
  
    
      
        E 
         
        [ 
        X 
        ] 
        = 
        n 
        p 
        . 
       
     
    {\displaystyle \operatorname {E} [X]=np.} 
   
  
For example, if n  = 100, and p  = 1/4, then the average number of successful results will be 25.
Proof:  We calculate the mean, μ , directly calculated from its definition
  
    
      
        μ 
        = 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            n 
           
         
        
          x 
          
            i 
           
         
        
          p 
          
            i 
           
         
        , 
       
     
    {\displaystyle \mu =\sum _{i=0}^{n}x_{i}p_{i},} 
   
  
and the binomial theorem :
  
    
      
        
          
            
              
                μ 
               
              
                 
                = 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    n 
                   
                 
                k 
                
                  
                    
                      ( 
                     
                    
                      n 
                      k 
                     
                    
                      ) 
                     
                   
                 
                
                  p 
                  
                    k 
                   
                 
                ( 
                1 
                − 
                p 
                
                  ) 
                  
                    n 
                    − 
                    k 
                   
                 
               
             
            
               
              
                 
                = 
                n 
                p 
                
                  ∑ 
                  
                    k 
                    = 
                    0 
                   
                  
                    n 
                   
                 
                k 
                
                  
                    
                      ( 
                      n 
                      − 
                      1 
                      ) 
                      ! 
                     
                    
                      ( 
                      n 
                      − 
                      k 
                      ) 
                      ! 
                      k 
                      ! 
                     
                   
                 
                
                  p 
                  
                    k 
                    − 
                    1 
                   
                 
                ( 
                1 
                − 
                p 
                
                  ) 
                  
                    ( 
                    n 
                    − 
                    1 
                    ) 
                    − 
                    ( 
                    k 
                    − 
                    1 
                    ) 
                   
                 
               
             
            
               
              
                 
                = 
                n 
                p 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                
                  
                    
                      ( 
                      n 
                      − 
                      1 
                      ) 
                      ! 
                     
                    
                      ( 
                      ( 
                      n 
                      − 
                      1 
                      ) 
                      − 
                      ( 
                      k 
                      − 
                      1 
                      ) 
                      ) 
                      ! 
                      ( 
                      k 
                      − 
                      1 
                      ) 
                      ! 
                     
                   
                 
                
                  p 
                  
                    k 
                    − 
                    1 
                   
                 
                ( 
                1 
                − 
                p 
                
                  ) 
                  
                    ( 
                    n 
                    − 
                    1 
                    ) 
                    − 
                    ( 
                    k 
                    − 
                    1 
                    ) 
                   
                 
               
             
            
               
              
                 
                = 
                n 
                p 
                
                  ∑ 
                  
                    k 
                    = 
                    1 
                   
                  
                    n 
                   
                 
                
                  
                    
                      ( 
                     
                    
                      
                        n 
                        − 
                        1 
                       
                      
                        k 
                        − 
                        1 
                       
                     
                    
                      ) 
                     
                   
                 
                
                  p 
                  
                    k 
                    − 
                    1 
                   
                 
                ( 
                1 
                − 
                p 
                
                  ) 
                  
                    ( 
                    n 
                    − 
                    1 
                    ) 
                    − 
                    ( 
                    k 
                    − 
                    1 
                    ) 
                   
                 
               
             
            
               
              
                 
                = 
                n 
                p 
                
                  ∑ 
                  
                    ℓ 
                    = 
                    0 
                   
                  
                    n 
                    − 
                    1 
                   
                 
                
                  
                    
                      ( 
                     
                    
                      
                        n 
                        − 
                        1 
                       
                      ℓ 
                     
                    
                      ) 
                     
                   
                 
                
                  p 
                  
                    ℓ 
                   
                 
                ( 
                1 
                − 
                p 
                
                  ) 
                  
                    ( 
                    n 
                    − 
                    1 
                    ) 
                    − 
                    ℓ 
                   
                 
               
               
              
                
                  with  
                 
                ℓ 
                := 
                k 
                − 
                1 
               
             
            
               
              
                 
                = 
                n 
                p 
                
                  ∑ 
                  
                    ℓ 
                    = 
                    0 
                   
                  
                    m 
                   
                 
                
                  
                    
                      ( 
                     
                    
                      m 
                      ℓ 
                     
                    
                      ) 
                     
                   
                 
                
                  p 
                  
                    ℓ 
                   
                 
                ( 
                1 
                − 
                p 
                
                  ) 
                  
                    m 
                    − 
                    ℓ 
                   
                 
               
               
              
                
                  with  
                 
                m 
                := 
                n 
                − 
                1 
               
             
            
               
              
                 
                = 
                n 
                p 
                ( 
                p 
                + 
                ( 
                1 
                − 
                p 
                ) 
                
                  ) 
                  
                    m 
                   
                 
               
             
            
               
              
                 
                = 
                n 
                p 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\mu &=\sum _{k=0}^{n}k{\binom {n}{k}}p^{k}(1-p)^{n-k}\\&=np\sum _{k=0}^{n}k{\frac {(n-1)!}{(n-k)!k!}}p^{k-1}(1-p)^{(n-1)-(k-1)}\\&=np\sum _{k=1}^{n}{\frac {(n-1)!}{((n-1)-(k-1))!(k-1)!}}p^{k-1}(1-p)^{(n-1)-(k-1)}\\&=np\sum _{k=1}^{n}{\binom {n-1}{k-1}}p^{k-1}(1-p)^{(n-1)-(k-1)}\\&=np\sum _{\ell =0}^{n-1}{\binom {n-1}{\ell }}p^{\ell }(1-p)^{(n-1)-\ell }&&{\text{with }}\ell :=k-1\\&=np\sum _{\ell =0}^{m}{\binom {m}{\ell }}p^{\ell }(1-p)^{m-\ell }&&{\text{with }}m:=n-1\\&=np(p+(1-p))^{m}\\&=np\end{aligned}}} 
   
  
  التاريخ  
This distribution was derived by James Bernoulli . He considered the case where p  = r /(r  + s ) where p  is the probability of success and r  and s  are positive integers. Blaise Pascal  had earlier considered the case where p  = 1/2.
  See also  
  الهامش  
^   Hamilton Institute. "The Binomial Distribution"  October 20, 2010. 
 
^   See Proof Wiki  
 
^   Mandelbrot, B. B., Fisher, A. J., & Calvet, L. E. (1997). A multifractal model of asset returns. 3.2 The Binomial Measure is the Simplest Example of a Multifractal  
 
  
  مراجع  
Discrete  univariate 
with finite  support with infinite  support 
Continuous  univariate 
supported on a  bounded interval supported on a  semi-infinite  interval supported  on the whole  real line with support  whose type varies 
Mixed  univariate 
Multivariate  (joint) Directional Degenerate    and singular العائلات